晶粒尺寸对7075铝合金腐蚀行为的影响研究

张建文, 黄举林, 黄玉辉, 邹向丹, 赵昊, 邵国华

装备环境工程 ›› 2025, Vol. 22 ›› Issue (10) : 123-131.

PDF(10932 KB)
PDF(10932 KB)
装备环境工程 ›› 2025, Vol. 22 ›› Issue (10) : 123-131. DOI: 10.7643/ issn.1672-9242.2025.10.015
重大工程装备

晶粒尺寸对7075铝合金腐蚀行为的影响研究

  • 张建文1, 黄举林1, 黄玉辉1, 邹向丹2, 赵昊2, 邵国华3, *
作者信息 +

Effect of Grain Size on Corrosion Behavior of 7075 Aluminum Alloy

  • ZHANG Jianwen1, HUANG Julin1, HUANG Yuhui1, ZOU Xiangdan2, ZHAO Hao2, SHAO Guohua3, *
Author information +
文章历史 +

摘要

目的 系统研究晶粒尺寸对其腐蚀行为的影响机制。方法 采用放电等离子烧结技术制备3种不同晶粒尺寸的7075铝合金材料,通过动电位极化曲线、电化学阻抗谱以及微区电化学扫描技术,结合第一性原理计算,分析晶粒尺寸与合金腐蚀敏感性存在相关性。结果 晶粒尺寸最小的S3试样表现出最低的腐蚀电位(-0.79 V)、最大的腐蚀电流密度(1.1×10-5 A/cm2)以及最大的晶间腐蚀深度,耐蚀性最差。晶界处富集的含铜析出相作为阴极活性位点,增大了阴极反应面积,通过加速阴极反应中的氧还原反应诱发阳极溶解。此外,相同平均尺寸下,晶粒分布均匀的S2试样较分散的S1试样耐蚀性更优。结论 晶粒尺寸均匀性是影响合金耐蚀性能的关键因素,为高强铝合金的晶粒优化设计提供了依据。

Abstract

The work aims to systematically study the influence mechanism of grain size on its corrosion behavior. Three different grain sizes of 7075 aluminum alloy samples were prepared using discharge plasma sintering technology, Through potentiodynamic polarization curves, electrochemical impedance spectroscopy, and micro area electrochemical scanning techniques, combined with first-principles calculations, the correlation between grain size and alloy corrosion sensitivity was analyzed. The S3 sample with the smallest grain size exhibited the lowest corrosion potential (-0.79 V), the maximum corrosion current density (1.1×10-5 A/cm2), and the maximum intergranular corrosion depth, with the worst corrosion resistance. The copper containing precipitates enriched at grain boundaries served as cathode active sites, inducing anodic dissolution by accelerating oxygen reduction reactions. In addition, under the same average size, S2 samples with uniform grain distribution had better corrosion resistance than dispersed S1 samples. In conclusion, grain size uniformity is a key factor affecting the corrosion resistance of alloys, providing a basis for optimizing the grain design of high-strength aluminum alloys.

关键词

7075铝合金 / 晶粒尺寸 / 电化学腐蚀 / 耐蚀性 / 晶间腐蚀 / 第一性原理

Key words

7075 aluminum alloy / grain size / electrochemical corrosion / corrosion resistance / intergranular corrosion / first-principles

引用本文

导出引用
张建文, 黄举林, 黄玉辉, 邹向丹, 赵昊, 邵国华. 晶粒尺寸对7075铝合金腐蚀行为的影响研究[J]. 装备环境工程. 2025, 22(10): 123-131 https://doi.org/10.7643/ issn.1672-9242.2025.10.015
ZHANG Jianwen, HUANG Julin, HUANG Yuhui, ZOU Xiangdan, ZHAO Hao, SHAO Guohua. Effect of Grain Size on Corrosion Behavior of 7075 Aluminum Alloy[J]. Equipment Environmental Engineering. 2025, 22(10): 123-131 https://doi.org/10.7643/ issn.1672-9242.2025.10.015
中图分类号: TG172   

参考文献

[1] 卢奇, 郑程, 李凯. 不同应力比条件下7075-T651铝合金裂纹扩展行为[J]. 理化检验-物理分册, 2025, 61(7): 23-26.
LU Q, ZHENG C, LI K.Crack Propagation Behavior of 7075-T651 Aluminum Alloy under Different Stress Ratios[J]. Physical Testing and Chemical Analysis (Part A (Physical Testing)), 2025, 61(7): 23-26.
[2] 闵爱武. 均匀化退火工艺对7075铝合金微观组织的影响研究[J]. 福建冶金, 2025, 54(2): 41-44.
MIN A W.Effect of Homogenization on the Microstructure of 7075 Aluminum Alloy[J]. Fujian Metallurgy, 2025, 54(2): 41-44.
[3] 聂江平, 姜云, 管庆开. 超声表面滚压处理对7075铝合金摩擦磨损性能的影响[J]. 中南大学学报(自然科学版), 2025, 56(2): 443-457.
NIE J P, JIANG Y, GUAN Q K.Effect of Ultrasonic Surface Rolling Process on Dry Friction and Wear Properties of 7075 Aluminum Alloy[J]. Journal of Central South University (Science and Technology), 2025, 56(2): 443-457.
[4] 李金磊, 张宝红, 杨勇彪, 等. 自然时效耦合循环加载训练对7075铝合金力学性能的影响[J]. 塑性工程学报, 2025, 32(4): 219-224.
LI J L, ZHANG B H, YANG Y B, et al.Effect of Natural Aging Coupled with Cyclic Loading Training on Mechanical Properties of 7075 Aluminum Alloy[J]. Journal of Plasticity Engineering, 2025, 32(4): 219-224.
[5] 岳景龙, 孙兴伟, 赵泓荀, 等. 航空铝合金7075薄壁件铣削形变量与表面缺陷综合控制[J]. 制造技术与机床, 2025(8): 163-171.
YUE J L, SUN X W, ZHAO H X, et al. Comprehensive Control of Deformation and Surface Quality in Milling of Aerospace Aluminum Alloy7075 Thin-Walled Parts[J]. Manufacturing Technology & Machine Tool, 2025(8): 163-171.
[6] 刘继华, 李荻, 刘培英. 热处理对7075铝合金应力腐蚀及断口形貌的影响[J]. 材料热处理学报, 2010, 31(7): 109-113.
LIU J H, LI D, LIU P Y.Effect of Heat Treatment on Stress Corrosion Behavior of 7075 Aluminum Alloy[J]. Transactions of Materials and Heat Treatment, 2010, 31(7): 109-113.
[7] 黄晶明, 王昭文, 刘增威, 等. 采用SECM分析7075铝合金的局部腐蚀行为[J]. 有色金属科学与工程, 2019, 10(3): 14-20.
HUANG J M, WANG Z W, LIU Z W, et al.Analysis of Local Corrosion of 7075 Aluminum Alloy by SECM[J]. Nonferrous Metals Science and Engineering, 2019, 10(3): 14-20.
[8] 汤慧珍, 王帅, 燕丽娟, 等. 人工时效对7075铝合金微观腐蚀行为的影响[J]. 金属热处理, 2024, 49(2): 153-158.
TANG H Z, WANG S, YAN L J, et al.Effect of Artificial Aging on Micro-Corrosion Behavior of 7075 Aluminum Alloy[J]. Heat Treatment of Metals, 2024, 49(2): 153-158.
[9] 翁硕, 孟超, 朱江峰, 等. 应力控制模式下疲劳损伤对AA7075-T651铝合金腐蚀行为影响的研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1029-1037.
WENG S, MENG C, ZHU J F, et al.Effect of Fatigue Damage under Stress-Controlled Mode on the Corrosion Behavior of AA7075-T651 Al-Alloy[J]. Journal of Chinese Society for Corrosion and Protection, 2024, 44(4): 1029-1037.
[10] 肖晓春, 张树国, 丁智超. 流变成形7075铝合金在EXC0溶液中的腐蚀行为研究[J]. 中国金属通报, 2025(1): 101-103.
XIAO X C, ZHANG S G, DING Z C. Study on Corrosion Behavior of Rheoforming7075 Aluminum Alloy in EXC0 Solution[J]. China Metal Bulletin, 2025(1): 101-103.
[11] 李瓒龙, 颜晴, 满成. 加压载荷和摩擦频率对7075铝合金磨损腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025: 1-11. (2025-02-13)[2025-04-03]. https://link.cnki. net/urlid/21.1474.TG.20250402.223.006.
LI Z L, YAN Q, MAN C. Effect of pressure load and friction frequency on wear corrosion behavior of7075 Al-alloy[J]. Journal of Chinese Society for Corrosion and Protection, 2025: 1-11.(2025-02-13)[2025-04-03]. https://link.cnki.net/urlid/21.1474.TG.20250402.223.006.
[12] 何源. 7075铝合金双级时效的组织与性能及其应力腐蚀开裂机理研究[D]. 杭州: 浙江工业大学, 2010.
HE Y.Research on the Microstructure Properties and Stress Corrosion Cracking Mechanism of 7075 Aluminum Alloy after Dual Stage Aging[D]. Hangzhou: Zhejiang University of Technology, 2010.
[13] 张志豪, 舒畅, 王竟成. 自然环境因素对铝合金大气腐蚀的影响性研究[J]. 装备环境工程, 2023, 20(12): 156-162.
ZHANG Z H, SHU C, WANG J C.Effect of Natural Environmental Factors on Atmospheric Corrosion of Aluminum Alloys[J]. Equipment Environmental Engineering, 2023, 20(12): 156-162.
[14] 赵全成, 罗来正, 黎小锋, 等. 两种典型大气环境下7A85铝合金的腐蚀行为研究[J]. 装备环境工程, 2020, 17(7): 70-75.
ZHAO Q C, LUO L Z, LI X F, et al.Corrosion Behavior of 7A85 Aluminum Alloy in Two Typical Atmospheric Environments[J]. Equipment Environmental Engineering, 2020, 17(7): 70-75.
[15] 钟勇, 苏艳, 罗来正, 等. 四种典型大气环境下7B50铝合金的腐蚀行为研究[J]. 装备环境工程, 2021, 18(11): 143-150.
ZHONG Y, SU Y, LUO L Z, et al.Corrosion Behavior of 7B50 Aluminum Alloy in Four Typical Atmospheric Environments[J]. Equipment Environmental Engineering, 2021, 18(11): 143-150.
[16] 彭文山, 段体岗, 马力, 等. 热带海洋环境中5083铝合金腐蚀行为研究[J]. 装备环境工程, 2023, 20(3): 77-83.
PENG W S, DUAN T G, MA L, et al.Corrosion Behaviors of 5083 Aluminum Alloy in Tropical Marine Environment[J]. Equipment Environmental Engineering, 2023, 20(3): 77-83.
[17] QIN J, LI Z, MA M Y, et al.Diversity of Intergranular Corrosion and Stress Corrosion Cracking for 5083 Al Alloy with Different Grain Sizes[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(3): 765-777.
[18] 于明洋. 7A56铝合金晶粒组织与性能相关性研究[D]. 北京: 北京有色金属研究总院, 2023.
YU M Y.Correlation between Grain Structure and Properties of 7A56 Aluminum Alloy[D]. Beijing: General Research Institute for Nonferrous Metals, 2023.
[19] 白清领, 缪姚军, 单小龙, 等. Al-5Ti-1B细化剂对7050铝合金晶粒尺寸和热裂敏感性的影响[J]. 冶金与材料, 2022, 14(6): 4-7.
BAI Q L, MIAO Y J, SHAN X L, et al.Effect of Al-5Ti-1B Refiner on Grain Size and Hot Cracking Sensitivity of 7050 Aluminum Alloy[J]. Metallurgy and Materials, 2022, 14(6): 4-7.
[20] 黄元春, 吴镇力, 王旭成, 等. 均匀化热处理对5083铝合金难溶相与晶粒尺寸的影响[J]. 材料工程, 2023, 51(4): 103-112.
HUANG Y C, WU Z L, WANG X C, et al.Effect of Homogenization Heat Treatment on Refractory Phase and Grain Size of 5083 Aluminum Alloy[J]. Journal of Materials Engineering, 2023, 51(4): 103-112.
[21] 张浩. 基于神经网络模型的6082铝合金晶粒尺寸预测及轮端轮毂锻造工艺优化[D]. 武汉: 华中科技大学, 2023.
ZHANG H.Prediction of Grain Size of 6082 Aluminum Alloy Based on Neural Network Model and Optimization of Forging Process of Wheel end Hub[D]. Wuhan: Huazhong University of Science and Technology, 2023.
[22] BRAUN R.Slow Strain Rate Testing of Aluminum Alloy 7075 In Different Tempers Using Various Synthetic Environments[J]. Corrosion, 1997, 53(6): 467-474.
[23] TSAI T C, CHUANG T H.Role of Grain Size on the Stress Corrosion Cracking of 7475 Aluminum Alloys[J]. Materials Science and Engineering: A, 1997, 225(1/2): 135-144.
[24] 王毅, 孙宗辉, 韩杰, 等. 7075铝合金不同晶粒度在3.5%NaCl溶液中耐腐蚀性能分析[J]. 山东冶金, 2022, 44(4): 40-42.
WANG Y, SUN Z H, HAN J, et al.Corrosion Resistance of 7075 Aluminium Alloy with Different Grain Sizes in 3.5%NaCl Solution[J]. Shandong Metallurgy, 2022, 44(4): 40-42.
[25] 徐效栋, 王芝秀, 顾晓彤. 7075-T6铝合金厚度截面组织和晶间腐蚀性能不均匀性的研究[J]. 热加工工艺, 2025, 54(6): 67-71.
XU X D, WANG Z X, GU X T.Study on Inhomogeneity of Microstructure and Intergranular Corrosion Properties on Thickness Section of 7075-T6 Aluminum Alloy[J]. Hot Working Technology, 2025, 54(6): 67-71.

PDF(10932 KB)

Accesses

Citation

Detail

段落导航
相关文章

/